ScaleReg {ReIns} | R Documentation |
Scale estimator in regression
Description
Estimator of the scale parameter in the regression case where \gamma
is constant and the regression modelling is thus placed solely on the scale parameter.
Usage
ScaleReg(s, Z, kernel = c("normal", "uniform", "triangular", "epanechnikov", "biweight"),
h, plot = TRUE, add = FALSE, main = "Estimates of scale parameter", ...)
Arguments
s |
Point to evaluate the scale estimator in. |
Z |
Vector of |
kernel |
The kernel used in the estimator. One of |
h |
The bandwidth used in the kernel function. |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
The scale estimator is computed as
\hat{A}(s) = 1/(k+1) \sum_{i=1}^n 1_{Z_i>Z_{n-k,n}} K_h(s-i/n)
with K_h(x)=K(x/h)/h,
K
the kernel function and h
the bandwidth.
Here, it is assumed that we have equidistant covariates x_i=i/n
.
See Section 4.4.1 in Albrecher et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
A |
Vector of the corresponding scale estimates. |
Author(s)
Tom Reynkens
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
See Also
ProbReg
, QuantReg
, scale
, Hill
Examples
data(norwegianfire)
Z <- norwegianfire$size[norwegianfire$year==76]
i <- 100
n <- length(Z)
# Scale estimator in i/n
A <- ScaleReg(i/n, Z, h=0.5, kernel = "epanechnikov")$A
# Small exceedance probability
q <- 10^6
ProbReg(Z, A, q, plot=TRUE)
# Large quantile
p <- 10^(-5)
QuantReg(Z, A, p, plot=TRUE)