Prob {ReIns} | R Documentation |
Weissman estimator of small exceedance probabilities and large return periods
Description
Compute estimates of a small exceedance probability P(X>q)
or large return period 1/P(X>q)
using the approach of Weissman (1978).
Usage
Prob(data, gamma, q, plot = FALSE, add = FALSE,
main = "Estimates of small exceedance probability", ...)
Return(data, gamma, q, plot = FALSE, add = FALSE,
main = "Estimates of large return period", ...)
Weissman.p(data, gamma, q, plot = FALSE, add = FALSE,
main = "Estimates of small exceedance probability", ...)
Weissman.r(data, gamma, q, plot = FALSE, add = FALSE,
main = "Estimates of large return period", ...)
Arguments
data |
Vector of |
gamma |
Vector of |
q |
The used large quantile (we estimate |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Weissman.p
and Weissman.r
are the same functions as Prob
and Return
but with a different name for compatibility with the old S-Plus
code.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
P |
Vector of the corresponding probability estimates, only returned for |
R |
Vector of the corresponding estimates for the return period, only returned for |
q |
The used large quantile. |
Author(s)
Tom Reynkens based on S-Plus
code from Yuri Goegebeur.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Weissman, I. (1978). "Estimation of Parameters and Large Quantiles Based on the k Largest Observations." Journal of the American Statistical Association, 73, 812–815.
See Also
Examples
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# Hill estimator
H <- Hill(SOAdata)
# Exceedance probability
q <- 10^6
# Weissman estimator
Prob(SOAdata,gamma=H$gamma,q=q,plot=TRUE)
# Return period
q <- 10^6
# Weissman estimator
Return(SOAdata,gamma=H$gamma,q=q,plot=TRUE)