LStail {ReIns} | R Documentation |
Least Squares tail estimator
Description
Computes the Least Squares (LS) estimates of the EVI based on the last k
observations of the generalised QQ-plot.
Usage
LStail(data, rho = -1, lambda = 0.5, logk = FALSE, plot = FALSE, add = FALSE,
main = "LS estimates of the EVI", ...)
TSfraction(data, rho = -1, lambda = 0.5, logk = FALSE, plot = FALSE, add = FALSE,
main = "LS estimates of the EVI", ...)
Arguments
data |
Vector of |
rho |
Estimate for |
lambda |
Parameter used in the method of Beirlant et al. (2002), only used when |
logk |
Logical indicating if the estimates are plotted as a function of |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
We estimate \gamma
(EVI) and b
using least squares on the following regression model (Beirlant et al., 2005): Z_j = \gamma + b(n/k) (j/k)^{-\rho} + \epsilon_j
with Z_j = (j+1) \log(UH_{j,n}/UH_{j+1,n})
and UH_{j,n}=X_{n-j,n}H_{j,n}
, where H_{j,n}
is the Hill estimator with threshold X_{n-j,n}
.
See Section 5.8 of Beirlant et al. (2004) for more details.
The function TSfraction
is included for compatibility with the old S-Plus
code.
Value
k |
Vector of the values of the tail parameter |
gamma |
Vector of the corresponding LS estimates for the EVI. |
b |
Vector of the corresponding LS estimates for b. |
rho |
Vector of the estimates for |
Author(s)
Tom Reynkens based on S-Plus
code from Yuri Goegebeur.
References
Beirlant, J., Dierckx, G. and Guillou, A. (2005). "Estimation of the Extreme Value Index and Regression on Generalized Quantile Plots." Bernoulli, 11, 949–970.
Beirlant, J., Dierckx, G., Guillou, A. and Starica, C. (2002). "On Exponential Representations of Log-spacing of Extreme Order Statistics." Extremes, 5, 157–180.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
See Also
Examples
data(soa)
# LS tail estimator
LStail(soa$size, plot=TRUE, ylim=c(0,0.5))