KaplanMeier {ReIns} | R Documentation |
Kaplan-Meier estimator
Description
Computes the Kaplan-Meier estimator for the survival function of right censored data.
Usage
KaplanMeier(x, data, censored, conf.type="plain", conf.int = 0.95)
Arguments
x |
Vector with points to evaluate the estimator in. |
data |
Vector of |
censored |
Vector of |
conf.type |
Type of confidence interval, see |
conf.int |
Confidence level of the two-sided confidence interval, see |
Details
We consider the random right censoring model where one observes Z = \min(X,C)
where X
is the variable of interest and C
is the censoring variable.
This function is merely a wrapper for survfit.formula
from survival.
This estimator is only suitable for right censored data. When the data are interval censored, one can use the Turnbull estimator implemented in Turnbull
.
Value
A list with following components:
surv |
A vector of length |
fit |
The output from the call to |
Author(s)
Tom Reynkens
References
Kaplan, E. L. and Meier, P. (1958). "Nonparametric Estimation from Incomplete Observations." Journal of the American Statistical Association, 53, 457–481.
See Also
Examples
data <- c(1, 2.5, 3, 4, 5.5, 6, 7.5, 8.25, 9, 10.5)
censored <- c(0, 1, 0, 0, 1, 0, 1, 1, 0, 1)
x <- seq(0, 12, 0.1)
# Kaplan-Meier estimator
plot(x, KaplanMeier(x, data, censored)$surv, type="s", ylab="Kaplan-Meier estimator")