GPDfit {ReIns} | R Documentation |
Fit GPD using MLE
Description
Fit the Generalised Pareto Distribution (GPD) to data using Maximum Likelihood Estimation (MLE).
Usage
GPDfit(data, start = c(0.1, 1), warnings = FALSE)
Arguments
data |
Vector of |
start |
Vector of length 2 containing the starting values for the optimisation. The first element
is the starting value for the estimator of |
warnings |
Logical indicating if possible warnings from the optimisation function are shown, default is |
Details
See Section 4.2.2 in Albrecher et al. (2017) for more details.
Value
A vector with the MLE estimate for the \gamma
parameter of the GPD as the first component and the MLE estimate for the \sigma
parameter of the GPD as the second component.
Author(s)
Tom Reynkens based on S-Plus
code from Yuri Goegebeur and R
code from Klaus Herrmann.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
See Also
Examples
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# Fit GPD to last 500 observations
res <- GPDfit(SOAdata-sort(soa$size)[500])