EPD {ReIns} | R Documentation |
EPD estimator
Description
Fit the Extended Pareto Distribution (GPD) to the exceedances (peaks) over a threshold. Optionally, these estimates are plotted as a function of k
.
Usage
EPD(data, rho = -1, start = NULL, direct = FALSE, warnings = FALSE,
logk = FALSE, plot = FALSE, add = FALSE, main = "EPD estimates of the EVI", ...)
Arguments
data |
Vector of |
rho |
A parameter for the |
start |
Vector of length 2 containing the starting values for the optimisation. The first element
is the starting value for the estimator of |
direct |
Logical indicating if the parameters are obtained by directly maximising the log-likelihood function, see Details. Default is |
warnings |
Logical indicating if possible warnings from the optimisation function are shown, default is |
logk |
Logical indicating if the estimates are plotted as a function of |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
Details
We fit the Extended Pareto distribution to the relative excesses over a threshold (X/u).
The EPD has distribution function F(x) = 1-(x(1+\kappa-\kappa x^{\tau}))^{-1/\gamma}
with \tau = \rho/\gamma <0<\gamma
and \kappa>\max(-1,1/\tau)
.
The parameters are determined using MLE and there are two possible approaches:
maximise the log-likelihood directly (direct=TRUE
) or follow the approach detailed in
Beirlant et al. (2009) (direct=FALSE
). The latter approach uses the score functions of the log-likelihood.
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Value
A list with following components:
k |
Vector of the values of the tail parameter |
gamma |
Vector of the corresponding estimates for the |
kappa |
Vector of the corresponding MLE estimates for the |
tau |
Vector of the corresponding estimates for the |
Author(s)
Tom Reynkens
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800–2815.
Fraga Alves, M.I. , Gomes, M.I. and de Haan, L. (2003). "A New Class of Semi-parametric Estimators of the Second Order Parameter." Portugaliae Mathematica, 60, 193–214.
See Also
Examples
data(secura)
# EPD estimates for the EVI
epd <- EPD(secura$size, plot=TRUE)
# Compute return periods
ReturnEPD(secura$size, 10^10, gamma=epd$gamma, kappa=epd$kappa,
tau=epd$tau, plot=TRUE)