CTE {ReIns} | R Documentation |
Conditional Tail Expectation
Description
Compute Conditional Tail Expectation (CTE) CTE_{1-p}
of the fitted spliced distribution.
Usage
CTE(p, splicefit)
ES(p, splicefit)
Arguments
p |
The probability associated with the CTE (we estimate |
splicefit |
A |
Details
The Conditional Tail Expectation is defined as
CTE_{1-p} = E(X | X>Q(1-p)) = E(X | X>VaR_{1-p}) = VaR_{1-p} + \Pi(VaR_{1-p})/p,
where \Pi(u)=E((X-u)_+)
is the premium of the excess-loss insurance with retention u.
If the CDF is continuous in p
, we have CTE_{1-p}=TVaR_{1-p}= 1/p \int_0^p VaR_{1-s} ds
with
TVaR
the Tail Value-at-Risk.
See Reynkens et al. (2017) and Section 4.6 of Albrecher et al. (2017) for more details.
The ES
function is the same function as CTE
but is deprecated.
Value
Vector with the CTE corresponding to each element of p
.
Author(s)
Tom Reynkens with R
code from Roel Verbelen for the mixed Erlang quantiles.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Reynkens, T., Verbelen, R., Beirlant, J. and Antonio, K. (2017). "Modelling Censored Losses Using Splicing: a Global Fit Strategy With Mixed Erlang and Extreme Value Distributions". Insurance: Mathematics and Economics, 77, 65–77.
Verbelen, R., Gong, L., Antonio, K., Badescu, A. and Lin, S. (2015). "Fitting Mixtures of Erlangs to Censored and Truncated Data Using the EM Algorithm." Astin Bulletin, 45, 729–758
See Also
qSplice
, ExcessSplice
, SpliceFit
, SpliceFitPareto
, SpliceFiticPareto
, SpliceFitGPD
Examples
## Not run:
# Pareto random sample
X <- rpareto(1000, shape = 2)
# Splice ME and Pareto
splicefit <- SpliceFitPareto(X, 0.6)
p <- seq(0.01, 0.99, 0.01)
# Plot of CTE
plot(p, CTE(p, splicefit), type="l", xlab="p", ylab=bquote(CTE[1-p]))
## End(Not run)