do.splapeig {Rdimtools} | R Documentation |
Supervised Laplacian Eigenmaps
Description
Supervised Laplacian Eigenmaps (SPLAPEIG) is a supervised variant of Laplacian Eigenmaps.
Instead of setting up explicit neighborhood, it utilizes an adaptive threshold strategy
to define neighbors for both within- and between-class neighborhood. It then builds affinity
matrices for each information and solves generalized eigenvalue problem. This algorithm
may be quite sensitive in the choice of beta
value.
Usage
do.splapeig(
X,
label,
ndim = 2,
preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"),
beta = 1,
gamma = 0.5
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
beta |
bandwidth parameter for heat kernel in |
gamma |
a balancing parameter in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Raducanu B, Dornaika F (2012). “A Supervised Non-Linear Dimensionality Reduction Approach for Manifold Learning.” Pattern Recognition, 45(6), 2432–2444.
See Also
Examples
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
label = as.factor(iris[,5])
## try different balancing parameters with beta=50
out1 = do.splapeig(X, label, beta=50, gamma=0.3); Y1=out1$Y
out2 = do.splapeig(X, label, beta=50, gamma=0.6); Y2=out2$Y
out3 = do.splapeig(X, label, beta=50, gamma=0.9); Y3=out3$Y
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(Y1, pch=19, col=label, main="gamma=0.3")
plot(Y2, pch=19, col=label, main="gamma=0.6")
plot(Y3, pch=19, col=label, main="gamma=0.9")
par(opar)