do.sammon {Rdimtools} | R Documentation |
Sammon Mapping
Description
do.sammon
is an implementation for Sammon mapping, one of the earliest
dimension reduction techniques that aims to find low-dimensional embedding
that preserves pairwise distance structure in high-dimensional data space.
Usage
do.sammon(
X,
ndim = 2,
preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"),
initialize = c("pca", "random")
)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
initialize |
|
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Sammon, J.W. (1969) A Nonlinear Mapping for Data Structure Analysis. IEEE Transactions on Computers, C-18 5:401-409.
Sammon JW (1969). “A Nonlinear Mapping for Data Structure Analysis.” IEEE Transactions on Computers, C-18(5), 401–409.
Examples
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
label = as.factor(iris$Species)
## compare two initialization
out1 = do.sammon(X,ndim=2) # random projection
out2 = do.sammon(X,ndim=2,initialize="pca") # pca as initialization
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, pch=19, col=label, main="out1:rndproj")
plot(out2$Y, pch=19, col=label, main="out2:pca")
par(opar)