do.llle {Rdimtools} | R Documentation |
Local Linear Laplacian Eigenmaps
Description
Local Linear Laplacian Eigenmaps is an unsupervised manifold learning method as an
extension of Local Linear Embedding (do.lle
). It is claimed to be
more robust to local structure and noises. It involves the concept of
artificial neighborhood in constructing the adjacency graph for reconstruction of
the approximated manifold.
Usage
do.llle(
X,
ndim = 2,
preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"),
K = round(nrow(X)/2),
P = max(round(nrow(X)/4), 2),
bandwidth = 0.2
)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is |
K |
size of near neighborhood for each data point. |
P |
size of artifical neighborhood. |
bandwidth |
scale parameter for Gaussian kernel. It should be in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Liu F, Zhang W, Gu S (2016). “Local Linear Laplacian Eigenmaps: A Direct Extension of LLE.” Pattern Recognition Letters, 75, 30–35.
See Also
Examples
## Not run:
## use iris data
data(iris)
X = as.matrix(iris[,1:4])
label = as.integer(iris$Species)
# see the effect bandwidth
out1 = do.llle(X, bandwidth=0.1, P=20)
out2 = do.llle(X, bandwidth=0.5, P=20)
out3 = do.llle(X, bandwidth=0.9, P=20)
# visualize the results
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=label, main="bandwidth=0.1")
plot(out2$Y, col=label, main="bandwidth=0.5")
plot(out3$Y, col=label, main="bandwidth=0.9")
par(opar)
## End(Not run)