do.lapeig {Rdimtools} | R Documentation |
Laplacian Eigenmaps
Description
do.lapeig
performs Laplacian Eigenmaps (LE) to discover low-dimensional
manifold embedded in high-dimensional data space using graph laplacians. This
is a classic algorithm employing spectral graph theory.
Usage
do.lapeig(X, ndim = 2, ...)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- eigvals
a vector of eigenvalues for laplacian matrix.
- trfinfo
a list containing information for out-of-sample prediction.
- algorithm
name of the algorithm.
Author(s)
Kisung You
References
Belkin M, Niyogi P (2003). “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.” Neural Computation, 15(6), 1373–1396.
Examples
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## try different levels of connectivity
out1 <- do.lapeig(X, type=c("proportion",0.5), weighted=FALSE)
out2 <- do.lapeig(X, type=c("proportion",0.10), weighted=FALSE)
out3 <- do.lapeig(X, type=c("proportion",0.25), weighted=FALSE)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="5% connected")
plot(out2$Y, pch=19, col=lab, main="10% connected")
plot(out3$Y, pch=19, col=lab, main="25% connected")
par(opar)