do.kmmc {Rdimtools} | R Documentation |
Kernel Maximum Margin Criterion
Description
Kernel Maximum Margin Criterion (KMMC) is a nonlinear variant of MMC method using kernel trick.
For computational simplicity, only the gaussian kernel is used with bandwidth parameter t
.
Usage
do.kmmc(
X,
label,
ndim = 2,
preprocess = c("center", "decorrelate", "whiten"),
t = 1
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Li H, Jiang T, Zhang K (2006). “Efficient and Robust Feature Extraction by Maximum Margin Criterion.” IEEE Transactions on Neural Networks, 17(1), 157–165.
See Also
Examples
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,100)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## perform MVP with different preprocessings
out1 = do.kmmc(X, label, t=0.1)
out2 = do.kmmc(X, label, t=1.0)
out3 = do.kmmc(X, label, t=10.0)
## visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="bandwidth=0.1")
plot(out2$Y, pch=19, col=label, main="bandwidth=1")
plot(out3$Y, pch=19, col=label, main="bandwidth=10.0")
par(opar)