do.klsda {Rdimtools} | R Documentation |
Kernel Locality Sensitive Discriminant Analysis
Description
Kernel LSDA (KLSDA) is a nonlinear extension of LFDA method using kernel trick. It applies conventional kernel method
to extend excavation of hidden patterns in a more flexible manner in tradeoff of computational load. For simplicity,
only the gaussian kernel parametrized by its bandwidth t
is supported.
Usage
do.klsda(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"),
alpha = 0.5,
k1 = max(ceiling(nrow(X)/10), 2),
k2 = max(ceiling(nrow(X)/10), 2),
t = 1
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
alpha |
balancing parameter for between- and within-class scatter in |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
t |
bandwidth parameter for heat kernel in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Cai D, He X, Zhou K, Han J, Bao H (2007). “Locality Sensitive Discriminant Analysis.” In Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07, 708–713.
Examples
## generate 3 different groups of data X and label vector
x1 = matrix(rnorm(4*10), nrow=10)-50
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+50
X = rbind(x1, x2, x3)
label = rep(1:3, each=10)
## try different kernel bandwidths
out1 = do.klsda(X, label, t=0.1)
out2 = do.klsda(X, label, t=1)
out3 = do.klsda(X, label, t=10)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=label, pch=19, main="bandwidth=0.1")
plot(out2$Y, col=label, pch=19, main="bandwidth=1")
plot(out3$Y, col=label, pch=19, main="bandwidth=10")
par(opar)