| do.klfda {Rdimtools} | R Documentation | 
Kernel Local Fisher Discriminant Analysis
Description
Kernel LFDA is a nonlinear extension of LFDA method using kernel trick. It applies conventional kernel method
to extend excavation of hidden patterns in a more flexible manner in tradeoff of computational load. For simplicity,
only the gaussian kernel parametrized by its bandwidth t is supported.
Usage
do.klfda(
  X,
  label,
  ndim = 2,
  preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
  type = c("proportion", 0.1),
  symmetric = c("union", "intersect", "asymmetric"),
  localscaling = TRUE,
  t = 1
)
Arguments
| X | an  | 
| label | a length- | 
| ndim | an integer-valued target dimension. | 
| preprocess | an additional option for preprocessing the data.
Default is "center". See also  | 
| type | a vector of neighborhood graph construction. Following types are supported;
 | 
| symmetric | one of  | 
| localscaling | 
 | 
| t | bandwidth parameter for heat kernel in  | 
Value
a named list containing
- Y
- an - (n\times ndim)matrix whose rows are embedded observations.
- trfinfo
- a list containing information for out-of-sample prediction. 
Author(s)
Kisung You
References
Sugiyama M (2006). “Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction.” In Proceedings of the 23rd International Conference on Machine Learning, 905–912.
Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601–1608. MIT Press.
See Also
Examples
## generate 3 different groups of data X and label vector
set.seed(100)
x1 = matrix(rnorm(4*10), nrow=10)-20
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+20
X     = rbind(x1, x2, x3)
label = rep(1:3, each=10)
## try different affinity matrices
out1 = do.klfda(X, label, t=0.1)
out2 = do.klfda(X, label, t=1)
out3 = do.klfda(X, label, t=10)
## visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="bandwidth=0.1")
plot(out2$Y, pch=19, col=label, main="bandwidth=1")
plot(out3$Y, pch=19, col=label, main="bandwidth=10")
par(opar)