do.klfda {Rdimtools} | R Documentation |
Kernel Local Fisher Discriminant Analysis
Description
Kernel LFDA is a nonlinear extension of LFDA method using kernel trick. It applies conventional kernel method
to extend excavation of hidden patterns in a more flexible manner in tradeoff of computational load. For simplicity,
only the gaussian kernel parametrized by its bandwidth t
is supported.
Usage
do.klfda(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
type = c("proportion", 0.1),
symmetric = c("union", "intersect", "asymmetric"),
localscaling = TRUE,
t = 1
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
localscaling |
|
t |
bandwidth parameter for heat kernel in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Sugiyama M (2006). “Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction.” In Proceedings of the 23rd International Conference on Machine Learning, 905–912.
Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601–1608. MIT Press.
See Also
Examples
## generate 3 different groups of data X and label vector
set.seed(100)
x1 = matrix(rnorm(4*10), nrow=10)-20
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+20
X = rbind(x1, x2, x3)
label = rep(1:3, each=10)
## try different affinity matrices
out1 = do.klfda(X, label, t=0.1)
out2 = do.klfda(X, label, t=1)
out3 = do.klfda(X, label, t=10)
## visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="bandwidth=0.1")
plot(out2$Y, pch=19, col=label, main="bandwidth=1")
plot(out3$Y, pch=19, col=label, main="bandwidth=10")
par(opar)