do.hydra {Rdimtools} | R Documentation |
Hyperbolic Distance Recovery and Approximation
Description
Hyperbolic Distance Recovery and Approximation, also known as hydra
in short,
implements embedding of distance-based data into hyperbolic space represented as the Poincare disk,
which is interior of a hypersphere.
Usage
do.hydra(X, ndim = 2, ...)
Arguments
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
Value
a named Rdimtools
S3 object containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations in the Poincare disk.- algorithm
name of the algorithm.
References
Keller-Ressel M, Nargang S (2020). “Hydra: A Method for Strain-Minimizing Hyperbolic Embedding of Network- and Distance-Based Data.” Journal of Complex Networks, 8(1), cnaa002. ISSN 2051-1329.
Examples
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
lab = as.factor(iris[,5])
## multiple runs with varying curvatures
embed1 <- do.hydra(X, kappa=0.1)
embed2 <- do.hydra(X, kappa=1)
embed3 <- do.hydra(X, kappa=10)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(embed1$Y , col=lab, pch=19, main="kappa=0.1")
plot(embed2$Y , col=lab, pch=19, main="kappa=1")
plot(embed3$Y , col=lab, pch=19, main="kappa=10")
par(opar)