do.dppca {Rdimtools} | R Documentation |
Dual Probabilistic Principal Component Analysis
Description
Dual view of PPCA optimizes the latent variables directly from a simple
Bayesian approach to model the noise using the multivariate Gaussian distribution
of zero mean and spherical covariance \beta^{-1} I
. When \beta
is too small,
the algorithm automatically returns an error and provides a guideline for minimal
value that enables successful computation.
Usage
do.dppca(X, ndim = 2, beta = 1)
Arguments
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
beta |
the degree for modeling the level of noise (default: 1). |
Value
a named Rdimtools
S3 object containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- algorithm
name of the algorithm.
References
Lawrence N (2005). “Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models.” Journal of Machine Learning Research, 6(60), 1783-1816.
See Also
Examples
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
lab = as.factor(iris[,5])
## compare difference choices of 'beta'
embed1 <- do.dppca(X, beta=0.2)
embed2 <- do.dppca(X, beta=1)
embed3 <- do.dppca(X, beta=5)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(embed1$Y , col=lab, pch=19, main="beta=0.2")
plot(embed2$Y , col=lab, pch=19, main="beta=1")
plot(embed3$Y , col=lab, pch=19, main="beta=5")
par(opar)