do.ulda {Rdimtools} | R Documentation |
Uncorrelated Linear Discriminant Analysis
Description
Uncorrelated LDA (Jin et al. 2001) is an extension of LDA by using the uncorrelated discriminant transformation and Kahrunen-Loeve expansion of the basis.
Usage
do.ulda(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "whiten", "decorrelate")
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Jin Z, Yang J, Hu Z, Lou Z (2001). “Face Recognition Based on the Uncorrelated Discriminant Transformation.” Pattern Recognition, 34(7), 1405–1416.
See Also
Examples
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## compare with LDA
out1 = do.lda(X, label)
out2 = do.ulda(X, label)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, pch=19, col=label, main="LDA")
plot(out2$Y, pch=19, col=label, main="Uncorrelated LDA")
par(opar)