do.rsir {Rdimtools} | R Documentation |
Regularized Sliced Inverse Regression
Description
One of possible drawbacks in SIR method is that for high-dimensional data, it might suffer from rank deficiency of scatter/covariance matrix. Instead of naive matrix inversion, several have proposed regularization schemes that reflect several ideas from various incumbent methods.
Usage
do.rsir(
X,
response,
ndim = 2,
h = max(2, round(nrow(X)/5)),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
regmethod = c("Ridge", "Tikhonov", "PCA", "PCARidge", "PCATikhonov"),
tau = 1,
numpc = ndim
)
Arguments
X |
an |
response |
a length- |
ndim |
an integer-valued target dimension. |
h |
the number of slices to divide the range of response vector. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
regmethod |
type of regularization scheme to be used. |
tau |
regularization parameter for adjusting rank-deficient scatter matrix. |
numpc |
number of principal components to be used in intermediate dimension reduction scheme. |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Chiaromonte F, Martinelli J (2002). “Dimension Reduction Strategies for Analyzing Global Gene Expression Data with a Response.” Mathematical Biosciences, 176(1), 123–144. ISSN 0025-5564.
Zhong W, Zeng P, Ma P, Liu JS, Zhu Y (2005). “RSIR: Regularized Sliced Inverse Regression for Motif Discovery.” Bioinformatics, 21(22), 4169–4175.
Bernard-Michel C, Gardes L, Girard S (2009). “Gaussian Regularized Sliced Inverse Regression.” Statistics and Computing, 19(1), 85–98.
Bernard-Michel C, Douté S, Fauvel M, Gardes L, Girard S (2009). “Retrieval of Mars Surface Physical Properties from OMEGA Hyperspectral Images Using Regularized Sliced Inverse Regression.” Journal of Geophysical Research, 114(E6).
See Also
Examples
## generate swiss roll with auxiliary dimensions
## it follows reference example from LSIR paper.
set.seed(100)
n = 50
theta = runif(n)
h = runif(n)
t = (1+2*theta)*(3*pi/2)
X = array(0,c(n,10))
X[,1] = t*cos(t)
X[,2] = 21*h
X[,3] = t*sin(t)
X[,4:10] = matrix(runif(7*n), nrow=n)
## corresponding response vector
y = sin(5*pi*theta)+(runif(n)*sqrt(0.1))
## try with different regularization methods
## use default number of slices
out1 = do.rsir(X, y, regmethod="Ridge")
out2 = do.rsir(X, y, regmethod="Tikhonov")
outsir = do.sir(X, y)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="RSIR::Ridge")
plot(out2$Y, main="RSIR::Tikhonov")
plot(outsir$Y, main="standard SIR")
par(opar)