do.rlda {Rdimtools} | R Documentation |
Regularized Linear Discriminant Analysis
Description
In small sample case, Linear Discriminant Analysis (LDA) may suffer from
rank deficiency issue. Applied mathematics has used Tikhonov regularization -
also known as \ell_2
regularization/shrinkage - to adjust linear operator.
Regularized Linear Discriminant Analysis (RLDA) adopts such idea to stabilize
eigendecomposition in LDA formulation.
Usage
do.rlda(X, label, ndim = 2, alpha = 1)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
alpha |
Tikhonow regularization parameter. |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Friedman JH (1989). “Regularized Discriminant Analysis.” Journal of the American Statistical Association, 84(405), 165.
Examples
## Not run:
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different regularization parameters
out1 <- do.rlda(X, label, alpha=0.001)
out2 <- do.rlda(X, label, alpha=0.01)
out3 <- do.rlda(X, label, alpha=100)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="RLDA::alpha=0.1")
plot(out2$Y, pch=19, col=label, main="RLDA::alpha=1")
plot(out3$Y, pch=19, col=label, main="RLDA::alpha=10")
par(opar)
## End(Not run)