do.pca {Rdimtools} | R Documentation |
Principal Component Analysis
Description
do.pca
performs a classical principal component analysis (Pearson 1901) using
RcppArmadillo
package for faster and efficient computation.
Usage
do.pca(X, ndim = 2, ...)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
Value
a named Rdimtools
S3 object containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- vars
a vector containing variances of projected data onto principal components.
- projection
a
(p\times ndim)
whose columns are basis for projection.- trfinfo
a list containing information for out-of-sample prediction.
- algorithm
name of the algorithm.
Author(s)
Kisung You
References
Pearson K (1901). “LIII. On Lines and Planes of Closest Fit to Systems of Points in Space.” Philosophical Magazine Series 6, 2(11), 559–572.
Examples
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## try covariance & correlation decomposition
out1 <- do.pca(X, ndim=2, cor=FALSE)
out2 <- do.pca(X, ndim=2, cor=TRUE)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, col=lab, pch=19, main="correlation decomposition")
plot(out2$Y, col=lab, pch=19, main="covariance decomposition")
par(opar)