do.npca {Rdimtools} | R Documentation |
Nonnegative Principal Component Analysis
Description
Nonnegative Principal Component Analysis (NPCA) is a variant of PCA where projection vectors - or, basis for learned subspace - contain no negative values.
Usage
do.npca(X, ndim = 2, ...)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
Value
a named Rdimtools
S3 object containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- projection
a
(p\times ndim)
whose columns are basis for projection.- algorithm
name of the algorithm.
Author(s)
Kisung You
References
Zafeiriou S, Laskaris N (2010). “Nonnegative Embeddings and Projections for Dimensionality Reduction and Information Visualization.” In 2010 20th International Conference on Pattern Recognition, 726–729.
See Also
Examples
## Not run:
## use iris data
data(iris, package="Rdimtools")
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4]) + 50
label = as.factor(iris[subid,5])
## run NCPA and compare with others
outNPC = do.npca(X)
outPCA = do.pca(X)
outMVP = do.mvp(X, label)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outNPC$Y, pch=19, col=label, main="NPCA")
plot(outPCA$Y, pch=19, col=label, main="PCA")
plot(outMVP$Y, pch=19, col=label, main="MVP")
par(opar)
## End(Not run)