do.nolpp {Rdimtools} | R Documentation |
Nonnegative Orthogonal Locality Preserving Projection
Description
Nonnegative Orthogonal Locality Preserving Projection (NOLPP) is a variant of OLPP where projection vectors - or, basis for learned subspace - contain no negative values.
Usage
do.nolpp(
X,
ndim = 2,
type = c("proportion", 0.1),
preprocess = c("null", "center", "scale", "cscale", "decorrelate", "whiten"),
t = 1,
maxiter = 1000,
reltol = 1e-05
)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
t |
kernel bandwidth in |
maxiter |
number of maximum iteraions allowed. |
reltol |
stopping criterion for incremental relative error. |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Zafeiriou S, Laskaris N (2010). “Nonnegative Embeddings and Projections for Dimensionality Reduction and Information Visualization.” In 2010 20th International Conference on Pattern Recognition, 726–729.
See Also
Examples
## Not run:
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## use different kernel bandwidths with 20% connectivity
out1 = do.nolpp(X, type=c("proportion",0.5), t=0.01)
out2 = do.nolpp(X, type=c("proportion",0.5), t=0.1)
out3 = do.nolpp(X, type=c("proportion",0.5), t=1)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=label, main="NOLPP::t=0.01")
plot(out2$Y, col=label, main="NOLPP::t=0.1")
plot(out3$Y, col=label, main="NOLPP::t=1")
par(opar)
## End(Not run)