do.mvp {Rdimtools} | R Documentation |
Maximum Variance Projection
Description
Maximum Variance Projection (MVP) is a supervised method based on linear discriminant analysis (LDA). In addition to classical LDA, it further aims at preserving local information by capturing the local geometry of the manifold via the following proximity coding,
,
where is the label of an
-th data point.
Usage
do.mvp(X, label, ndim = 2)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
Value
a named Rdimtools
S3 object containing
- Y
an
matrix whose rows are embedded observations.
- projection
a
whose columns are basis for projection.
- algorithm
name of the algorithm.
Author(s)
Kisung You
References
Zhang T (2007). “Maximum Variance Projections for Face Recognition.” Optical Engineering, 46(6), 067206.
Examples
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## perform MVP and compare with others
outMVP = do.mvp(X, label)
outPCA = do.pca(X)
outLDA = do.lda(X, label)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outMVP$Y, col=label, pch=19, main="MVP")
plot(outPCA$Y, col=label, pch=19, main="PCA")
plot(outLDA$Y, col=label, pch=19, main="LDA")
par(opar)
[Package Rdimtools version 1.1.2 Index]