do.modp {Rdimtools} | R Documentation |
Modified Orthogonal Discriminant Projection
Description
Modified Orthogonal Discriminant Projection (MODP) is a variant of Orthogonal Discriminant Projection (ODP). Authors argue the assumption in modeling ODP's mechanism to reflect distance and class labeling seem unsound. They propose a modified method to explore the intrinsic structure of original data and enhance the classification ability.
Usage
do.modp(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
type = c("proportion", 0.1),
symmetric = c("union", "intersect", "asymmetric"),
alpha = 0.5,
beta = 10
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
alpha |
balancing parameter of non-local and local scatter in |
beta |
scaling control parameter for distant pairs of data in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- projection
a
(p\times ndim)
whose columns are basis for projection.- trfinfo
a list containing information for out-of-sample prediction.
References
Zhang S, Lei Y, Wu Y, Yang J (2011). “Modified Orthogonal Discriminant Projection for Classification.” Neurocomputing, 74(17), 3690–3694.
Examples
## generate 3 different groups of data X and label vector
x1 = matrix(rnorm(4*10), nrow=10)-20
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+20
X = rbind(x1, x2, x3)
label = rep(1:3, each=10)
## try different beta (scaling control) parameter
out1 = do.modp(X, label, beta=1)
out2 = do.modp(X, label, beta=10)
out3 = do.modp(X, label, beta=100)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="MODP::beta=1")
plot(out2$Y, main="MODP::beta=10")
plot(out3$Y, main="MODP::beta=100")
par(opar)