do.mmc {Rdimtools} | R Documentation |
Maximum Margin Criterion
Description
Maximum Margin Criterion (MMC) is a linear supervised dimension reduction method that maximizes average margin between classes. The cost function is defined as
where is an overall variance of class mean vectors, and
refers to
spread of every class. Note that Principal Component Analysis (PCA) maximizes
total scatter,
.
Usage
do.mmc(X, label, ndim = 2)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
Value
a named Rdimtools
S3 object containing
- Y
an
matrix whose rows are embedded observations.
- projection
a
whose columns are basis for projection.
- algorithm
name of the algorithm.
Author(s)
Kisung You
References
Li H, Jiang T, Zhang K (2006). “Efficient and Robust Feature Extraction by Maximum Margin Criterion.” IEEE Transactions on Neural Networks, 17(1), 157–165.
Examples
## use iris data
data(iris, package="Rdimtools")
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## compare MMC with other methods
outMMC = do.mmc(X, label)
outMVP = do.mvp(X, label)
outPCA = do.pca(X)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outMMC$Y, pch=19, col=label, main="MMC")
plot(outMVP$Y, pch=19, col=label, main="MVP")
plot(outPCA$Y, pch=19, col=label, main="PCA")
par(opar)