do.lpca2006 {Rdimtools} | R Documentation |
Locally Principal Component Analysis by Yang et al. (2006)
Description
Locally Principal Component Analysis (LPCA) is an unsupervised linear dimension reduction method. It focuses on the information brought by local neighborhood structure and seeks the corresponding structure, which may contain useful information for revealing discriminative information of the data.
Usage
do.lpca2006(
X,
ndim = 2,
type = c("proportion", 0.1),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Yang J, Zhang D, Yang J (2006). “Locally Principal Component Learning for Face Representation and Recognition.” Neurocomputing, 69(13-15), 1697–1701.
Examples
## use iris dataset
data(iris)
set.seed(100)
subid = sample(1:150,100)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## try different neighborhood size
out1 <- do.lpca2006(X, ndim=2, type=c("proportion",0.25))
out2 <- do.lpca2006(X, ndim=2, type=c("proportion",0.50))
out3 <- do.lpca2006(X, ndim=2, type=c("proportion",0.75))
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="LPCA2006::25% connected")
plot(out2$Y, pch=19, col=lab, main="LPCA2006::50% connected")
plot(out3$Y, pch=19, col=lab, main="LPCA2006::75% connected")
par(opar)