do.lfda {Rdimtools} | R Documentation |
Local Fisher Discriminant Analysis
Description
Local Fisher Discriminant Analysis (LFDA) is a linear dimension reduction method for supervised case, i.e., labels are given. It reflects local information to overcome undesired results of traditional Fisher Discriminant Analysis which results in a poor mapping when samples in a single class form form several separate clusters.
Usage
do.lfda(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
type = c("proportion", 0.1),
symmetric = c("union", "intersect", "asymmetric"),
localscaling = TRUE
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
localscaling |
|
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- projection
a
(p\times ndim)
whose columns are basis for projection.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Sugiyama M (2006). “Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction.” In Proceedings of the 23rd International Conference on Machine Learning, 905–912.
Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601–1608. MIT Press.
Examples
## generate 3 different groups of data X and label vector
x1 = matrix(rnorm(4*10), nrow=10)-20
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+20
X = rbind(x1, x2, x3)
label = rep(1:3, each=10)
## try different affinity matrices
out1 = do.lfda(X, label)
out2 = do.lfda(X, label, localscaling=FALSE)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, col=label, main="binary affinity matrix")
plot(out2$Y, col=label, main="local scaling affinity")
par(opar)