do.lde {Rdimtools} | R Documentation |
Local Discriminant Embedding
Description
Local Discriminant Embedding (LDE) is a supervised algorithm that learns the embedding for the submanifold of each class. Its idea is to same-class data points maintain their original neighborhood information while segregating different-class data distinct from each other.
Usage
do.lde(
X,
label,
ndim = 2,
t = 1,
numk = max(ceiling(nrow(X)/10), 2),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
t |
kernel bandwidth in |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Hwann-Tzong Chen, Huang-Wei Chang, Tyng-Luh Liu (2005). “Local Discriminant Embedding and Its Variants.” In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, 846–853.
Examples
## generate data of 2 types with clear difference
set.seed(100)
diff = 15
dt1 = aux.gensamples(n=50)-diff;
dt2 = aux.gensamples(n=50)+diff;
## merge the data and create a label correspondingly
X = rbind(dt1,dt2)
label = rep(1:2, each=50)
## try different neighborhood size
out1 <- do.lde(X, label, numk=5)
out2 <- do.lde(X, label, numk=10)
out3 <- do.lde(X, label, numk=25)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="LDE::k=5")
plot(out2$Y, pch=19, col=label, main="LDE::k=10")
plot(out3$Y, pch=19, col=label, main="LDE::k=25")
par(opar)