| do.kudp {Rdimtools} | R Documentation | 
Kernel-Weighted Unsupervised Discriminant Projection
Description
Kernel-Weighted Unsupervised Discriminant Projection (KUDP) is a generalization of UDP where proximity is given by weighted values via heat kernel,
K_{i,j} = \exp(-\|x_i-x_j\|^2/bandwidth)
whence UDP uses binary connectivity. If bandwidth is +\infty, it becomes
a standard UDP problem. Like UDP, it also performs PCA preprocessing for rank-deficient case.
Usage
do.kudp(
  X,
  ndim = 2,
  type = c("proportion", 0.1),
  preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
  bandwidth = 1
)
Arguments
X | 
 an   | 
ndim | 
 an integer-valued target dimension.  | 
type | 
 a vector of neighborhood graph construction. Following types are supported;
  | 
preprocess | 
 an additional option for preprocessing the data.
Default is "center". See also   | 
bandwidth | 
 bandwidth parameter for heat kernel as the equation above.  | 
Value
a named list containing
- Y
 an
(n\times ndim)matrix whose rows are embedded observations.- trfinfo
 a list containing information for out-of-sample prediction.
- projection
 a
(p\times ndim)whose columns are basis for projection.- interimdim
 the number of PCA target dimension used in preprocessing.
Author(s)
Kisung You
References
Yang J, Zhang D, Yang J, Niu B (2007). “Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 650–664.
See Also
Examples
## use iris dataset
data(iris)
set.seed(100)
subid = sample(1:150,50)
X     = as.matrix(iris[subid,1:4])
lab   = as.factor(iris[subid,5])
## use different kernel bandwidth
out1 <- do.kudp(X, bandwidth=0.1)
out2 <- do.kudp(X, bandwidth=10)
out3 <- do.kudp(X, bandwidth=1000)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=lab, pch=19, main="bandwidth=0.1")
plot(out2$Y, col=lab, pch=19, main="bandwidth=10")
plot(out3$Y, col=lab, pch=19, main="bandwidth=1000")
par(opar)