do.fa {Rdimtools} | R Documentation |
Exploratory Factor Analysis
Description
do.fa
is an optimization-based implementation of a popular technique for Exploratory Data Analysis.
It is closely related to principal component analysis.
Usage
do.fa(X, ndim = 2, ...)
Arguments
X |
an |
ndim |
an integer-valued number of loading variables, or target dimension. |
... |
extra parameters including
|
Value
a named Rdimtools
S3 object containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- projection
a
(p\times ndim)
whose columns are basis for projection.- loadings
a
(p\times ndim)
matrix whose rows are extracted loading factors.- noise
a length-
p
vector of estimated noise.- algorithm
name of the algorithm.
Author(s)
Kisung You
References
Spearman C (1904). “"General Intelligence," Objectively Determined and Measured.” The American Journal of Psychology, 15(2), 201.
Examples
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## compare with PCA and MDS
out1 <- do.fa(X, ndim=2)
out2 <- do.mds(X, ndim=2)
out3 <- do.pca(X, ndim=2)
## visualize three different projections
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="Factor Analysis")
plot(out2$Y, pch=19, col=lab, main="MDS")
plot(out3$Y, pch=19, col=lab, main="PCA")
par(opar)