do.elpp2 {Rdimtools} | R Documentation |
Enhanced Locality Preserving Projection (2013)
Description
Enhanced Locality Preserving Projection proposed in 2013 (ELPP2) is built upon a parameter-free philosophy from PFLPP. It further aims to exclude its projection to be uncorrelated in the sense that the scatter matrix is placed in a generalized eigenvalue problem.
Usage
do.elpp2(
X,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- projection
a
(p\times ndim)
whose columns are basis for projection.- trfinfo
a list containing information for out-of-sample prediction.
Author(s)
Kisung You
References
Dornaika F, Assoum A (2013). “Enhanced and Parameterless Locality Preserving Projections for Face Recognition.” Neurocomputing, 99, 448–457.
See Also
Examples
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## compare with PCA and PFLPP
out1 = do.pca(X, ndim=2)
out2 = do.pflpp(X, ndim=2)
out3 = do.elpp2(X, ndim=2)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="PCA")
plot(out2$Y, pch=19, col=lab, main="Parameter-Free LPP")
plot(out3$Y, pch=19, col=lab, main="Enhanced LPP (2013)")
par(opar)