do.ammc {Rdimtools} | R Documentation |
Adaptive Maximum Margin Criterion
Description
Adaptive Maximum Margin Criterion (AMMC) is a supervised linear dimension reduction method.
The method uses different weights to characterize the different contributions of the
training samples embedded in MMC framework. With the choice of a=0
, b=0
, and
lambda=1
, it is identical to standard MMC method.
Usage
do.ammc(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
a = 1,
b = 1,
lambda = 1
)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a |
tuning parameter for between-class weight in |
b |
tuning parameter for within-class weight in |
lambda |
balance parameter for between-class and within-class scatter matrices in |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Lu J, Tan Y (2011). “Adaptive Maximum Margin Criterion for Image Classification.” In 2011 IEEE International Conference on Multimedia and Expo, 1–6.
See Also
Examples
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different lambda values
out1 = do.ammc(X, label, lambda=0.1)
out2 = do.ammc(X, label, lambda=1)
out3 = do.ammc(X, label, lambda=10)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="AMMC::lambda=0.1", pch=19, cex=0.5, col=label)
plot(out2$Y, main="AMMC::lambda=1", pch=19, cex=0.5, col=label)
plot(out3$Y, main="AMMC::lambda=10", pch=19, cex=0.5, col=label)
par(opar)