do.lspe {Rdimtools} | R Documentation |
Locality and Similarity Preserving Embedding
Description
Locality and Similarity Preserving Embedding (LSPE) is a feature selection method based on Neighborhood Preserving Embedding (do.npe
) and
Sparsity Preserving Projection (do.spp
) by first building a neighborhood graph and
then mapping the locality structure to reconstruct coefficients such that data similarity is preserved.
Use of \ell_{2,1}
norm boosts to impose column-sparsity that enables feature selection procedure.
Usage
do.lspe(
X,
ndim = 2,
preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"),
alpha = 1,
beta = 1,
bandwidth = 1
)
Arguments
X |
an |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
alpha |
nonnegative number to control |
beta |
nonnegative number to control the degree of local similarity. |
bandwidth |
positive number for Gaussian kernel bandwidth to define similarity. |
Value
a named list containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- featidx
a length-
ndim
vector of indices with highest scores.- trfinfo
a list containing information for out-of-sample prediction.
- projection
a
(p\times ndim)
whose columns are basis for projection.
Author(s)
Kisung You
References
Fang X, Xu Y, Li X, Fan Z, Liu H, Chen Y (2014). “Locality and Similarity Preserving Embedding for Feature Selection.” Neurocomputing, 128, 304–315.
See Also
Examples
#### generate R12in72 dataset
set.seed(100)
X = aux.gensamples(n=50, dname="R12in72")
#### try different bandwidth values
out1 = do.lspe(X, bandwidth=0.1)
out2 = do.lspe(X, bandwidth=1)
out3 = do.lspe(X, bandwidth=10)
#### visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="LSPE::bandwidth=0.1")
plot(out2$Y, main="LSPE::bandwidth=1")
plot(out3$Y, main="LSPE::bandwidth=10")
par(opar)