do.cscore {Rdimtools} | R Documentation |
Constraint Score
Description
Constraint Score (Zhang et al. 2008) is a filter-type algorithm for feature selection using pairwise constraints. It first marks all pairwise constraints as same- and different-cluster and construct a feature score for both constraints. It takes ratio or difference of feature score vectors and selects the indices with smallest values.
Usage
do.cscore(X, label, ndim = 2, ...)
Arguments
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
Value
a named Rdimtools
S3 object containing
- Y
an
(n\times ndim)
matrix whose rows are embedded observations.- cscore
a length-
p
vector of constraint scores. Indices with smallest values are selected.- featidx
a length-
ndim
vector of indices with highest scores.- projection
a
(p\times ndim)
whose columns are basis for projection.- trfinfo
a list containing information for out-of-sample prediction.
- algorithm
name of the algorithm.
References
Zhang D, Chen S, Zhou Z (2008). “Constraint Score: A New Filter Method for Feature Selection with Pairwise Constraints.” Pattern Recognition, 41(5), 1440–1451.
See Also
Examples
## use iris data
## it is known that feature 3 and 4 are more important.
data(iris)
iris.dat = as.matrix(iris[,1:4])
iris.lab = as.factor(iris[,5])
## try different strategy
out1 = do.cscore(iris.dat, iris.lab, score="ratio")
out2 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0)
out3 = do.cscore(iris.dat, iris.lab, score="difference", lambda=0.5)
out4 = do.cscore(iris.dat, iris.lab, score="difference", lambda=1)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(out1$Y, col=iris.lab, main="ratio")
plot(out2$Y, col=iris.lab, main="diff/lambda=0")
plot(out3$Y, col=iris.lab, main="diff/lambda=0.5")
plot(out4$Y, col=iris.lab, main="diff/lambda=1")
par(opar)