est.twonn {Rdimtools} | R Documentation |
Intrinsic Dimension Estimation by a Minimal Neighborhood Information
Description
Unlike many intrinsic dimension (ID) estimation methods, est.twonn
only requires
two nearest datapoints from a target point and their distances. This extremely minimal approach
is claimed to redue the effects of curvature and density variation across different locations
in an underlying manifold.
Usage
est.twonn(X)
Arguments
X |
an |
Value
a named list containing containing
- estdim
estimated intrinsic dimension.
Author(s)
Kisung You
References
Facco E, d'Errico M, Rodriguez A, Laio A (2017). “Estimating the Intrinsic Dimension of Datasets by a Minimal Neighborhood Information.” Scientific Reports, 7(1).
Examples
## create 3 datasets of intrinsic dimension 2.
X1 = aux.gensamples(dname="swiss")
X2 = aux.gensamples(dname="ribbon")
X3 = aux.gensamples(dname="saddle")
## acquire an estimate for intrinsic dimension
out1 = est.twonn(X1)
out2 = est.twonn(X2)
out3 = est.twonn(X3)
## print the results
line1 = paste0("* est.twonn : 'swiss' gives ",round(out1$estdim,2))
line2 = paste0("* est.twonn : 'ribbon' gives ",round(out2$estdim,2))
line3 = paste0("* est.twonn : 'saddle' gives ",round(out3$estdim,2))
cat(paste0(line1,"\n",line2,"\n",line3))
[Package Rdimtools version 1.1.2 Index]