est.made {Rdimtools} | R Documentation |
Manifold-Adaptive Dimension Estimation
Description
do.made
first aims at finding local dimesion estimates using nearest neighbor techniques based on
the first-order approximation of the probability mass function and then combines them to get a single global estimate. Due to the rate of convergence of such
estimate to be independent of assumed dimensionality, authors claim this method to be
manifold-adaptive.
Usage
est.made(
X,
k = round(sqrt(ncol(X))),
maxdim = min(ncol(X), 15),
combine = c("mean", "median", "vote")
)
Arguments
X |
an |
k |
size of neighborhood for analysis. |
maxdim |
maximum possible dimension allowed for the algorithm to investigate. |
combine |
method to aggregate local estimates for a single global estimate. |
Value
a named list containing containing
- estdim
estimated global intrinsic dimension.
- estloc
a length-
n
vector estimated dimension at each point.
Author(s)
Kisung You
References
Farahmand AM, Szepesvári C, Audibert J (2007). “Manifold-Adaptive Dimension Estimation.” In ICML, volume 227 of ACM International Conference Proceeding Series, 265–272.
Examples
## create a data set of intrinsic dimension 2.
X = aux.gensamples(dname="swiss")
## compare effect of 3 combining scheme
out1 = est.made(X, combine="mean")
out2 = est.made(X, combine="median")
out3 = est.made(X, combine="vote")
## print the results
line1 = paste0("* est.made : 'mean' estiamte is ",round(out1$estdim,2))
line2 = paste0("* est.made : 'median' estiamte is ",round(out2$estdim,2))
line3 = paste0("* est.made : 'vote' estiamte is ",round(out3$estdim,2))
cat(paste0(line1,"\n",line2,"\n",line3))