aux.gensamples {Rdimtools} | R Documentation |
Generate model-based samples
Description
It generates samples from predefined shapes, set by dname
parameter.
Also incorporated a functionality to add white noise with degree noise
.
Usage
aux.gensamples(
n = 496,
noise = 0.01,
dname = c("swiss", "crown", "helix", "saddle", "ribbon", "bswiss", "cswiss",
"twinpeaks", "sinusoid", "mobius", "R12in72"),
...
)
Arguments
n |
the number of points to be generated. | ||||||
noise |
level of additive white noise. | ||||||
dname |
name of a predefined shape. Should be one of
| ||||||
... |
extra parameters for the followings #'
|
Value
an (n\times p)
matrix of generated data by row. For all methods other than "R12in72"
, it returns a matrix with p=3
.
Author(s)
Kisung You
References
Hein M, Audibert J (2005). “Intrinsic Dimensionality Estimation of Submanifolds in $R^d$.” In Proceedings of the 22nd International Conference on Machine Learning, 289–296.
van der Maaten L (2009). “Learning a Parametric Embedding by Preserving Local Structure.” Proceedings of AI-STATS.
Examples
## generating toy example datasets
set.seed(100)
dat.swiss = aux.gensamples(50, dname="swiss")
dat.crown = aux.gensamples(50, dname="crown")
dat.helix = aux.gensamples(50, dname="helix")