RcppProgress-package {RcppProgress} | R Documentation |
An interruptible progress bar with OpenMP support for c++ in R packages
Description
This package allows to display a progress bar in the R console for long running computations taking place in c++ code, and provides support for interrupting those computations even in a multithreaded code.
Details
When implementing CPU intensive computations in C++ in R packages, it is natural to want to monitor the progress of those computations, and to be able to interrupt them, even when using multithreading for example with OpenMP. Another feature is that it can be done so that the code will still work even without OpenMP support. This package offers some facilities to help implementing those features. It it biased towards the use of OpenMP, but it should be compatible when using multithreading in other ways.
quick try
There are two tests functions provided by the package to get a quick overview of what can be done.
These tests are:
- RcppProgress:::test_sequential(max, nb, display_progress)
- a sequential code, i.e. single threaded
- RcppProgress:::test_multithreaded(max, nb, threads, display_progress)
- a multithreaded code using OpenMP
They both are wrappers for examples implemented in the RcppProgressExample package
located in the examples
directory of the RcppProgress installed package.
Both tests call the very same function that implements a long computation. The max parameter controls the number of computations, and nb controls the duration of a single computation, that is quadratic in nb. The threads is as expected the number of threads to use for the computation. The progress parameter toggles the display of the progress bar.
On my platform,
system.time( RcppProgress:::test_multithreaded(100, 3000, 4) )
is a good start.
c++ usage
There are usually two locations in the c++ code that needs to be modified. The first one is the main loop, typically on the number of jobs or tasks. This loop is a good candidate to be parallelized using OpenMP. I will comment the code corresponding to the tests included with the package.
void test_multithreaded_omp(int max, int nb, int threads , bool display\_progress) { \#ifdef _OPENMP if ( threads > 0 ) omp_set_num_threads( threads ); REprintf(\"Number of threads=%i\n\", omp_get_max_threads()); \#endif Progress p(max, display_progress); // create the progress monitor #pragma omp parallel for schedule(dynamic) for (int i = 0; i < max; ++i) { if ( ! p.is_aborted() ) { // the only way to exit an OpenMP loop long_computation(nb); p.increment(); // update the progress } } }
Here we create a Progress object with the number of tasks to perform, then
before performing a task we test for abortion (p.is_aborted()
), because we can not exit an
OpenMP loop the usual way, suing a break for example, then
when after the computation, we increment the progress monitor.
Then let us look at the computation function (that is completely useless) :
double long_computation(int nb) { double sum = 0; for (int i = 0; i < nb; ++i) { if ( Progress::check_abort() ) // check for user abort return -1; for (int j = 0; j < nb; ++j) { sum += Rf_dlnorm(i+j, 0.0, 1.0, 0); } } } return sum; }
Here the only interesting line is the Progress::check_abort()
call.
If called from the master thread, it will check for user interruption, and if needed
set the abort status code.
When called from another thread it will just check the status.
So all the art is to decide where to put his call: it should not be called not too often
or not frequently enough.
As a rule of thumb it should be called roughly evevry second.
Using RcppProgress in your package
Please note that we provide the RcppProgressExample example package along with this package,
located in the examples
directory of the installed package.
Here are the steps to use RcppProgress in a new package:
- skeleton
-
create a package skeleton using Rcpp
library(Rcpp) Rcpp.package.skeleton("RcppProgressExample")
- DESCRIPTION
edit the DESCRIPTION file and add RcppProgress to the Depends: and LinkingTo: lines. e.g.
Depends: Rcpp (>= 0.9.4), RcppProgress (>= 0.1) LinkingTo: Rcpp, RcppProgress
- MakeVars
edit src/MakeVars and replace its content by
PKG_LIBS = '$(R_HOME)/bin/Rscript -e "Rcpp:::LdFlags()"' $(SHLIB_OPENMP_CXXFLAGS) '$(R_HOME)/bin/Rscript -e "RcppProgress:::CxxFlags()"' and
PKG_CXXFLAGS +=-Ilibsrc $(SHLIB_OPENMP_CXXFLAGS) '$(R_HOME)/bin/Rscript -e "RcppProgress:::CxxFlags()"'
- c++ code
-
Put your code in src. You may for instance copy the RcppProgressExample/src/tests.cpp file in src, and RcppProgressExample/R/tests.R in R, and try to compile the package (
R CMD INSTALL -l test .
) and execute the tests:>library(RcppProgressExample, lib.loc="test") >RcppProgressExample::test_multithreaded(100, 600, 4)
Using RcppProgress with RcppArmadillo
We also provide the RcppProgressArmadillo example package along with this package,
located in the examples
directory of the installed package.
The peculiarity is that you have to include the RcppArmadillo.h header before the progress.hpp RcppProgress header, and add the RcppArmadillo in the LinkingTo: field of the package DESCRIPTION file.
Author(s)
Karl Forner
Maintainer: Karl Forner <karl.forner@quartzbio.com>
See Also
- OpenMP
API specification for parallel programming: http://openmp.org
- Rcpp
Examples
# these are implemented as examples inside RcppProgress provided
# example package: examples/RcppProgressExample
# check the source code
# the underlying test_test_multithreaded c++ function is multithreaded
# , has a progress bar and is still interruptible
## Not run:
RcppProgress:::test_multithreaded(nb = 300, threads = 4, recompile = TRUE)
## End(Not run)