| linear_regression {RcppFastAD} | R Documentation | 
Evaluate a squared-loss linear regression at a given parameter value
Description
Not that this function does not actually fit the model. Rather it evaluates the squared sum of residuals and ‘gradient’ of parameters.
Usage
linear_regression(X, y, theta_hat, initial_lr = 1e-04, max_iter = 100L,
  tol = 1e-07)
Arguments
| X | Matrix with independent explanatory variables | 
| y | Vector with dependent variable | 
| theta_hat | Vector with initial ‘guess’ of parameter values | 
| initial_lr | [Optional] Scalar with initial step-size value, default is 1e-4 | 
| max_iter | [Optional] Scalar with maximum number of iterations, default is 100 | 
| tol | [Optional] Scalar with convergence tolerance, default is 1e-7 | 
Value
A list object with the ‘loss’, ‘theta’ (parameters), ‘gradient’ and ‘iter’ for iterations
Examples
data(trees)   # also used in help(lm)
X <- as.matrix(cbind(const=1, trees[, c("Girth", "Height")]))
y <- trees$Volume
linear_regression(X, y, rep(0, 3), tol=1e-12)
coef(lm(y ~ X - 1))  # for comparison
[Package RcppFastAD version 0.0.2 Index]