bayeslm {RcppDist} | R Documentation |
bayeslm
Description
Demonstrates the use of RcppDist in C++ with Bayesian linear regression
Usage
bayeslm(y, x, iters = 1000L)
Arguments
y |
A numeric vector – the response |
x |
A numeric matrix – the explanatory variables; note this assumes you have included a column of ones if you intend there to be an intercept. |
iters |
An integer vector of length one, the number of posterior draws desired; the default is 1000. |
Details
To see an example of using RcppDist C++ functions in C++ code, we can code up a Bayesian linear regression with completely uninformative priors (such that estimates should be equivalent to classical estimates). The code to do so is as follows:
#include <RcppDist.h> // or, alternatively, // #include <RcppArmadillo.h> // #include <mvnorm.h> // [[Rcpp::depends(RcppArmadillo, RcppDist)]] // [[Rcpp::export]] Rcpp::List bayeslm(const arma::vec& y, const arma::mat x, const int iters = 1000) { int n = x.n_rows; int p = x.n_cols; double a = (n - p) / 2.0; arma::mat xtx = x.t() * x; arma::mat xtxinv = xtx.i(); arma::vec mu = xtxinv * x.t() * y; arma::mat px = x * xtxinv * x.t(); double ssq = arma::as_scalar(y.t() * (arma::eye(n, n) - px) * y); ssq *= (1.0 / (n - p)); double b = 1.0 / (a * ssq); arma::mat beta_draws(iters, p); Rcpp::NumericVector sigma_draws(iters); for ( int iter = 0; iter < iters; ++iter ) { double sigmasq = 1.0 / R::rgamma(a, b); sigma_draws[iter] = sigmasq; // Here we can use our multivariate normal generator beta_draws.row(iter) = rmvnorm(1, mu, xtxinv * sigmasq); } return Rcpp::List::create(Rcpp::_["beta_draws"] = beta_draws, Rcpp::_["sigma_draws"] = sigma_draws); }
Value
A list of length two; the first element is a numeric matrix of the beta draws and the second element is a numeric vector of the sigma draws
Examples
set.seed(123)
n <- 30
x <- cbind(1, matrix(rnorm(n*3), ncol = 3))
beta <- matrix(c(10, 2, -1, 3), nrow = 4)
y <- x %*% beta + rnorm(n)
freqmod <- lm(y ~ x[ , -1])
bayesmod <- bayeslm(y, x)
round(unname(coef(freqmod)), 2)
round(apply(bayesmod$beta_draws, 2, mean), 2)
c(beta)
[Package RcppDist version 0.1.1 Index]