predict.sclm {RcppCensSpatial} | R Documentation |
Prediction in spatial models with censored/missing responses
Description
It performs spatial prediction in a set of new S
spatial locations.
Usage
## S3 method for class 'sclm'
predict(object, locPre, xPre, ...)
Arguments
object |
object of class |
locPre |
matrix of coordinates for which prediction is performed. |
xPre |
matrix of covariates for which prediction is performed. |
... |
further arguments passed to or from other methods. |
Details
This function predicts using the mean squared error (MSE) criterion, which takes the conditional expectation E(Y|X) as the best linear predictor.
Value
The function returns a list with:
coord |
matrix of coordinates. |
predValues |
predicted values. |
sdPred |
predicted standard deviations. |
Author(s)
Katherine L. Valeriano, Alejandro OrdoƱez, Christian E. Galarza, and Larissa A. Matos.
See Also
Examples
set.seed(1000)
n = 120
coords = round(matrix(runif(2*n,0,15),n,2), 5)
x = cbind(rbinom(n,1,0.50), rnorm(n), rnorm(n))
data = rCensSp(c(1,4,-1), 2, 3, 0.50, x, coords, "left", 0.10, 20)
## Estimation
data1 = data$Data
# Estimation: EM algorithm
fit1 = EM.sclm(y=data1$y, x=data1$x, ci=data1$ci, lcl=data1$lcl,
ucl=data1$ucl, coords=data1$coords, phi0=2.50, nugget0=1)
# Estimation: SAEM algorithm
fit2 = SAEM.sclm(y=data1$y, x=data1$x, ci=data1$ci, lcl=data1$lcl,
ucl=data1$ucl, coords=data1$coords, phi0=2.50, nugget0=1)
# Estimation: MCEM algorithm
fit3 = MCEM.sclm(y=data1$y, x=data1$x, ci=data1$ci, lcl=data1$lcl,
ucl=data1$ucl, coords=data1$coords, phi0=2.50, nugget0=1,
MaxIter=300)
cbind(fit1$theta, fit2$theta, fit3$theta)
# Prediction
data2 = data$TestData
pred1 = predict(fit1, data2$coords, data2$x)
pred2 = predict(fit2, data2$coords, data2$x)
pred3 = predict(fit3, data2$coords, data2$x)
# Cross-validation
mean((data2$y - pred1$predValues)^2)
mean((data2$y - pred2$predValues)^2)
mean((data2$y - pred3$predValues)^2)
[Package RcppCensSpatial version 0.3.0 Index]