| CovMat {RcppCensSpatial} | R Documentation | 
Covariance matrix for spatial models
Description
It computes the spatial variance-covariance matrix considering exponential, gaussian, matérn, or power exponential correlation function.
Usage
CovMat(phi, tau2, sig2, coords, type = "exponential", kappa = NULL)
Arguments
| phi | spatial scaling parameter. | 
| tau2 | nugget effect parameter. | 
| sig2 | partial sill parameter. | 
| coords | 2D spatial coordinates of dimensions  | 
| type | type of spatial correlation function:  | 
| kappa | parameter for some spatial correlation functions. For exponential
and gaussian  | 
Details
The spatial covariance matrix is given by
\Sigma = [Cov(s_i, s_j )] = \sigma^2 R(\phi) + \tau^2 I_n,
where \sigma^2 > 0 is the partial sill, \phi > 0 is the spatial scaling
parameter, \tau^2 > 0 is known as the nugget effect in the geostatistical
framework, R(\phi) is the n\times n correlation matrix computed from a
correlation function, and I_n is the n\times n identity matrix.
The spatial correlation functions available are:
- Exponential:
- Corr(d) = exp(-d/\phi),
- Gaussian:
- Corr(d) = exp(-(d/\phi)^2),
- Matérn:
- Corr(d) = \frac{1}{2^{(\kappa-1)}\Gamma(\kappa)}\left(\frac{d}{\phi}\right)^\kappa K_\kappa \left( \frac{d}{\phi} \right),
- Power exponential:
- Corr(d) = exp(-(d/\phi)^\kappa),
where d \geq 0 is the Euclidean distance between two observations,
\Gamma(.) is the gamma function, \kappa is the smoothness parameter,
and K_\kappa(.) is the modified Bessel function of the second kind of order
\kappa.
Value
An n\times n spatial covariance matrix.
Author(s)
Katherine L. Valeriano, Alejandro Ordoñez, Christian E. Galarza, and Larissa A. Matos.
See Also
dist2Dmatrix, EM.sclm, MCEM.sclm, SAEM.sclm
Examples
set.seed(1000)
n = 20
coords = round(matrix(runif(2*n, 0, 10), n, 2), 5)
Cov = CovMat(phi=5, tau2=0.8, sig2=2, coords=coords, type="exponential")