plot.coxph {RcmdrPlugin.survival} | R Documentation |
Plot Method for coxph Objects
Description
Plots the predicted survival function from a coxph
object, setting covariates to particular values.
Usage
## S3 method for class 'coxph'
plot(x, newdata, typical = mean, byfactors=FALSE,
col = palette(), lty, conf.level = 0.95, ...)
Arguments
x |
a |
newdata |
a data frame containing (combinations of) values to which predictors are set; optional. |
typical |
function to use to compute "typical" values of numeric predictors. |
byfactors |
if |
col |
colors for lines. |
lty |
line-types for lines; if missing, defaults to 1 to number required. |
conf.level |
level for confidence intervals; note: whether or not confidence intervals are
plotted is determined by |
... |
arguments passed to |
Details
If newdata
is missing then all combinations of levels of factor-predictors (or strata),
if present, are combined with "typical" values of numeric predictors.
Value
Invisibly returns the summary
resulting from applying survfit.coxph
to the coxph
object.
Author(s)
John Fox jfox@mcmaster.ca.
References
John Fox, Marilia Sa Carvalho (2012). The RcmdrPlugin.survival Package: Extending the R Commander Interface to Survival Analysis. Journal of Statistical Software, 49(7), 1-32. doi:10.18637/jss.v049.i07.
See Also
coxph
, survfit.coxph
,
plot.survfit
.
Examples
require(survival)
cancer$sex <- factor(ifelse(cancer$sex == 1, "male", "female"))
mod.1 <- coxph(Surv(time, status) ~ age + wt.loss, data=cancer)
plot(mod.1)
plot(mod.1, typical=function(x) quantile(x, c(.25, .75)))
mod.2 <- coxph(Surv(time, status) ~ age + wt.loss + sex, data=cancer)
plot(mod.2)
mod.3 <- coxph(Surv(time, status) ~ (age + wt.loss)*sex, data=cancer)
plot(mod.3)
mod.4 <- coxph(Surv(time, status) ~ age + wt.loss + strata(sex), data=cancer)
plot(mod.4)
mods.1 <- survreg(Surv(time, status) ~ age + wt.loss, data=cancer)