computeUnSupervised {RclusTool} | R Documentation |
Unsupervised clustering
Description
Perform unsupervised clustering, dealing with the number of clusters K, automatically or not.
Usage
computeUnSupervised(
data.sample,
K = 0,
method.name = "K-means",
pca = FALSE,
pca.nb.dims = 0,
spec = FALSE,
use.sampling = FALSE,
sampling.size.max = 0,
scaling = FALSE,
RclusTool.env = initParameters(),
echo = FALSE
)
Arguments
data.sample |
list containing features, profiles and clustering results. |
K |
number of clusters. If K=0 (default), this number is automatically computed thanks to the Elbow method. |
method.name |
character vector specifying the constrained algorithm to use. Must be 'K-means' (default), 'EM' (Expectation-Maximization), 'Spectral', 'HC' (Hierarchical Clustering) or 'PAM' (Partitioning Around Medoids). |
pca |
boolean: if TRUE, Principal Components Analysis is applied to reduce the data space. |
pca.nb.dims |
number of principal components kept. If pca.nb.dims=0, this number is computed automatically. |
spec |
boolean: if TRUE, spectral embedding is applied to reduce the data space. |
use.sampling |
boolean: if FALSE (default), data sampling is not used. |
sampling.size.max |
numeric: maximal size of the sampling set. |
scaling |
boolean: if TRUE, scaling is applied. |
RclusTool.env |
environment in which all global parameters, raw data and results are stored. |
echo |
boolean: if FALSE (default), no description printed in the console. |
Details
computeUnSupervised performs unsupervised clustering, dealing with the number of clusters K, automatically or not
Value
data.sample list containing features, profiles and updated clustering results (with vector of labels and clusters summaries).
See Also
computeKmeans
, computeEM
, spectralClustering
, computePcaSample
, computeSpectralEmbeddingSample
Examples
dat <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2))
tf <- tempfile()
write.table(dat, tf, sep=",", dec=".")
x <- importSample(file.features=tf)
x <- computeUnSupervised(x, K=0, pca=TRUE, echo=TRUE)
label <- x$clustering[["K-means_pca"]]$label
plot(dat[,1], dat[,2], type = "p", xlab = "x", ylab = "y",
col = label, main = "K-means clustering")