Rchoice {Rchoice} | R Documentation |
Estimate discrete choice model with random parameters
Description
Estimation of discrete choice models such as Binary (logit and probit), Poisson and Ordered (logit and probit) model with random coefficients for cross-sectional and panel data using simulated maximum likelihood.
Usage
Rchoice(
formula,
data,
subset,
weights,
na.action,
family,
start = NULL,
ranp = NULL,
R = 40,
haltons = NA,
seed = NULL,
correlation = FALSE,
panel = FALSE,
index = NULL,
mvar = NULL,
print.init = FALSE,
init.ran = 0.1,
gradient = TRUE,
...
)
## S3 method for class 'Rchoice'
terms(x, ...)
## S3 method for class 'Rchoice'
model.matrix(object, ...)
## S3 method for class 'Rchoice'
coef(object, ...)
## S3 method for class 'Rchoice'
fitted(object, ...)
## S3 method for class 'Rchoice'
residuals(object, ...)
## S3 method for class 'Rchoice'
df.residual(object, ...)
## S3 method for class 'Rchoice'
update(object, new, ...)
## S3 method for class 'Rchoice'
logLik(object, ...)
## S3 method for class 'Rchoice'
print(
x,
digits = max(3, getOption("digits") - 3),
width = getOption("width"),
...
)
## S3 method for class 'Rchoice'
summary(object, ...)
## S3 method for class 'summary.Rchoice'
print(
x,
digits = max(3, getOption("digits") - 3),
width = getOption("width"),
...
)
Arguments
formula |
a symbolic description of the model to be estimated. The |
data |
the data. It may be a |
subset |
an optional vector specifying a subset of observations, |
weights |
an optional vector of weigths, |
na.action |
a function wich indicated what should happen when the data
contains |
family |
the distribution to be used. It might be |
start |
a vector of starting values, |
ranp |
a named vector whose names are the random parameters and values the distribution:
" |
R |
the number of draws if |
haltons |
only relevant if |
seed |
the seed for the pseudo-random draws. This is only relevant if |
correlation |
only relevant if |
panel |
if |
index |
a string indicating the ‘id’ for individuals in the data. This argument is not required if data is a |
mvar |
only valid if |
print.init |
if |
init.ran |
initial values for standard deviation of random parameters. Default is 0.1, |
gradient |
if |
... |
further arguments passed to |
x , object |
and object of class |
new |
an updated formula for the update method, |
digits |
number of digits, |
width |
width, |
Details
The models are estimated using the maxLik
function from maxLik
package.
If ranp
is not NULL
, the random parameter model is estimated.
A random parameter model or random coefficient models permits regression parameter to
vary across individuals according to some distribution. A fully parametric
random parameter model specifies the latent variable y^{*}
conditional on regressors
x
and given parameters \beta_i
to have conditional density f(y|x, \beta_i)
where
\beta_i
are iid with density g(\beta_i|\theta_i)
. The density is assumed a priori by the user by the argument
ranp
. If the parameters are assumed to be normally distributed \beta_i ~ N(\beta, \Sigma)
, then the random parameter are constructed as:
\beta_{ir}=\beta+L\omega_{ir}
where LL'=\Sigma
and \omega_{ir}
is the r-th draw from standard normal distribution for individual i
.
Once the model is specified by the argument family
, the model is estimated using
Simulated Maximum Likelihood (SML). The probabilities, given by f(y|x, \beta_i)
, are simulated using R
pseudo-draws if halton=NULL
or R
halton draws if halton = NA
. The user can also specified the primes and the number of dropped elements for the halton draws. For example, if the model consists of two random parameters, the user can specify haltons = list("prime" = c(2, 3), "drop" = c(11, 11))
.
A random parameter hierarchical model can be estimated by including heterogeneity in the mean of the random parameters:
\beta_{ir}=\beta+\pi's_i+L\omega_{ir}
Rchoice manages the variables in the hierarchical model by the formula
object: all the hierarchical variables (s_i
) are included after the |
symbol. The argument mvar
indicate which variables enter in each random parameter. See examples below
Value
An object of class “Rchoice
”, a list elements:
coefficients |
the named vector of coefficients, |
family |
type of model, |
link |
distribution of the errors, |
logLik |
a set of values of the maximum likelihood procedure, |
mf |
the model framed used, |
formula |
the formula (a Formula object), |
time |
|
freq |
frequency of dependent variable, |
draws |
type of draws used, |
R.model |
|
R |
number of draws used, |
bi |
an array of dimension |
Qir |
matrix of dimension |
ranp |
vector indicating the variables with random parameters and their distribution, |
probabilities |
the fitted probabilities for each individuals, |
residuals |
the residuals, |
call |
the matched call. |
Author(s)
Mauricio Sarrias msarrias86@gmail.com
References
Greene, W. H. (2012). Econometric Analysis. 7 edition. Prentice Hall.
Train, K. (2009). Discrete Choice Methods with Simulation. Cambridge university press.
See Also
Examples
## Probit model
data("Workmroz")
probit <- Rchoice(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
data = Workmroz, family = binomial('probit'))
summary(probit)
## Poisson model
data("Articles")
poisson <- Rchoice(art ~ fem + mar + kid5 + phd + ment, data = Articles, family = poisson)
summary(poisson)
## Ordered probit model
data("Health")
oprobit <- Rchoice(newhsat ~ age + educ + hhinc + married + hhkids,
data = Health, family = ordinal('probit'), subset = year == 1988)
summary(oprobit)
## Poisson Model with Random Parameters
poisson.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
data = Articles, family = poisson,
ranp = c(kid5 = "n", phd = "n", ment = "n"))
summary(poisson.ran)
## Poisson Model with Correlated Random Parameters
poissonc.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
data = Articles,
ranp = c(kid5 = "n", phd = "n", ment = "n"),
family = poisson,
correlation = TRUE,
R = 20)
summary(poissonc.ran)
## Hierarchical Poisson Model
poissonH.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment | fem + phd,
data = Articles,
ranp = c(kid5 = "n", phd = "n", ment = "n"),
mvar = list(phd = c("fem"), ment = c("fem", "phd")),
family = poisson,
R = 10)
summary(poissonH.ran)
## Ordered Probit Model with Random Effects and Random Parameters
Health$linc <- log(Health$hhinc)
oprobit.ran <- Rchoice(newhsat ~ age + educ + married + hhkids + linc,
data = Health[1:2000, ],
family = ordinal('probit'),
ranp = c(constant = "n", hhkids = "n", linc = "n"),
panel = TRUE,
index = "id",
R = 10,
print.init = TRUE)
summary(oprobit.ran)