| csu_time_trend {Rcan} | R Documentation | 
csu_time_trend
Description
csu_time_trend  plot stats over year.
Usage
csu_time_trend(df_data,
		var_trend = "asr",
		var_year = "year",
		group_by = NULL,
		logscale = FALSE,
		smoothing = NULL,
		legend = csu_trend_legend(),
		color_trend = NULL,
		ytitle = "Age standardized rate per 100,000",
		plot_title = "csu_title") 
Arguments
| df_data | Data (need to be R  | 
| var_trend | Statistics variable to be plot on Y axis. | 
| var_year | Time variable. | 
| group_by | Variable to compare different age specific rate (sex, country, cancer ...). | 
| logscale | Logical value: if  | 
| smoothing | Apply a smoothing using the R loess function.  | 
| legend | legend option: see  | 
| color_trend | Vector of color for the trend. The color codes are hexadecimal (e.g. "#FF0000") or predefined R color names (e.g. "red"). | 
| ytitle | Y-axis title. Default is "Age standardized rate per 100,000". | 
| plot_title | Title of the plot. | 
Details
This function is design the plot a statistics over time. It has been design for the ASR by year, but can be used for other statistics over time period.
The group_by option allow to compare different population or cancer.
Value
Return a plot.
Author(s)
Mathieu Laversanne
See Also
csu_group_cases
csu_merge_cases_pop
csu_asr
csu_cumrisk
csu_eapc
csu_ageSpecific
csu_ageSpecific_top
csu_bar_top
csu_trendCohortPeriod
Examples
	data(csu_registry_data_2)
	# you can import your data from csv file using read.csv:
	# mydata <-  read.csv("mydata.csv", sep=",")
	# to select only 1 population 
	test <- subset(csu_registry_data_2 , registry_label == "Colombia, Cali")
	# to change sex variable to factor with label
	test$sex <- factor(test$sex, levels=c(1,2), labels=c("Male", "Female"))
	# to calculate the asr
	df_asr <- csu_asr(
		test,missing_age = 99,
		group_by  = c("registry", "registry_label", "year", "sex", "ethnic"),
		var_age_group =  c("registry", "registry_label")
		)
	# plot ASR ove year, by sex.
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver")
	# plot ASR over year, by sex, with small smoothing.
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.3)
	# plot ASR over year, by sex, with high smoothing.
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.5)
	# Plot embedded in a graphic device
	pdf("test.pdf",width = 11.692 , height =  8.267) 
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.3)
	csu_time_trend(df_asr, group_by="sex",
			  plot_title = "Colombia, Liver",
			  smoothing = 0.5)
	dev.off()