csu_merge_cases_pop {Rcan} | R Documentation |
csu_merge_cases_pop
Description
csu_merge_cases_pop
merges registry data and population data, group by year and other user defined variable (sex, registry, etc...).
Usage
csu_merge_cases_pop(df_cases,
df_pop,
var_age,
var_cases="cases",
var_py=NULL,
group_by=NULL)
Arguments
df_cases |
Registry data group by 5 years-age group (need to be R | |||||||||||||||||||
df_pop |
Population data group by 5-years age group (need to be R | |||||||||||||||||||
var_age |
Age variable. Several format are accepted
This variable must be a variable with the same column name in both dataset ( | |||||||||||||||||||
var_cases |
Cases variable in the | |||||||||||||||||||
var_py |
(Optional) If population is "long format", name of the population variable in the | |||||||||||||||||||
group_by |
(Optional) A vector of variables to create the different population (sex, country, etc...). |
Details
This function merges registry data and population for further analysis.
Both datasets must be group by 5-years age group.
If present, the year information in format "yyyy" will be detected automatically.
2 formats are accepted for population data:.
Long format: (year and population are 2 variables)
sex | age | pop | year |
1 | 1 | 116128 | 2005 |
1 | 2 | 130995 | 2005 |
1 | 3 | 137556 | 2005 |
... | ... | ... | ... |
2 | 16 | 27171 | 2007 |
2 | 17 | 13585 | 2007 |
2 | 18 | 13585 | 2007 |
Wide format: (One column per year and no population variable, "yyyy" year format must be included in columns name)
sex | age | Y2013 | Y2014 | Y2015 |
1 | 0-4 | 215607 | 237346 | 247166 |
1 | 5-9 | 160498 | 152190 | 152113 |
1 | 10-14 | 175676 | 171794 | 165406 |
... | ... | ... | ... | ... |
2 | 75-79 | 20625 | 20868 | 23434 |
2 | 80-84 | 7187 | 7276 | 7620 |
2 | 85+ | 2551 | 2597 | 2617 |
Value
Return a dataframe.
Author(s)
Mathieu Laversanne
See Also
csu_group_cases
csu_asr
csu_cumrisk
csu_eapc
csu_ageSpecific
csu_ageSpecific_top
csu_bar_top
csu_time_trend
csu_trendCohortPeriod
Examples
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
data(ICD_group_GLOBOCAN)
data(data_individual_file)
data(data_population_file)
#group individual data by
# 5 year age group
# ICD grouping from dataframe ICD_group_GLOBOCAN
# year (extract from date of incidence)
df_data_year <- csu_group_cases(data_individual_file,
var_age="age",
group_by=c("sex", "regcode", "reglabel"),
df_ICD = ICD_group_GLOBOCAN,
var_ICD ="site",
var_year = "doi")
#Merge 5-years age grouped data with population by year (automatic) and sex
df_data <- csu_merge_cases_pop(
df_data_year,
data_population_file,
var_age = "age_group",
var_cases = "cases",
var_py = "pop",
group_by = c("sex"))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")