csu_cumrisk {Rcan} | R Documentation |
csu_cumrisk
Description
csu_cumrisk
Calculate cumulative risk across different population (Registry, year, sex...)
Usage
csu_cumrisk(df_data,
var_age = "age",
var_cases = "cases",
var_py ="py",
group_by=NULL,
missing_age = NULL,
last_age = 15,
var_st_err=NULL,
correction_info=FALSE,
var_cumrisk="cumrisk")
Arguments
df_data |
Data (need to be R | |||||||||||||||||||
var_age |
Age variable. Several format are accepted
Missing age value must be precise in the option | |||||||||||||||||||
var_cases |
Number of event (cases, deaths, ...) variable. | |||||||||||||||||||
var_py |
Population year variable. | |||||||||||||||||||
group_by |
A vector of variables to compare different ASR (sex, country, cancer ...). | |||||||||||||||||||
missing_age |
Age value representing the missing age cases. | |||||||||||||||||||
last_age |
Last age group included, must be between 2 and 17. 2 represents 5-9, ... 5 represents 20-24, ..., 17 represents 80-84, 18 represents 85+ etc. | |||||||||||||||||||
var_st_err |
Calculate the Standard error and name of the new variable. | |||||||||||||||||||
correction_info |
Logical value. if | |||||||||||||||||||
var_cumrisk |
Name of the new variable for the cumulative risk. |
Details
Calculate cumulative risk across different population
the age group include in cumulative risk will always exclude the last age group since we do not know the size of the last age group (ie: 85+, 80+ etc..)
Value
Return a data.frame
.
Author(s)
Mathieu Laversanne
References
See Also
csu_group_cases
csu_merge_cases_pop
csu_asr
csu_cumrisk
csu_eapc
csu_ageSpecific
csu_ageSpecific_top
csu_bar_top
csu_time_trend
csu_trendCohortPeriod
Examples
data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# Cumulative risk, 0-74 years, with no missing age cases.
result <- csu_cumrisk(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ))
# you can export your result as csv file using write.csv:
# write.csv(result, file="result.csv")
# Cumulative risk, 0-74 years, with the percentage of correction due to missing age cases.
result <- csu_cumrisk(csu_registry_data_1,
"age", "cases", "py",
group_by = c("registry", "registry_label" ),
missing_age = 19,
correction_info = TRUE)
# Cumulative risk 0-74 years and standard error with missing age.
result <- csu_cumrisk(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_st_err = "st_err",
missing_age = 99)
# Cumulative risk, 0-69 years.
result <- csu_cumrisk(csu_registry_data_2,
"age", "cases", "py",
group_by = c("registry", "registry_label", "sex", "year", "ethnic" ),
var_st_err = "st_err",
last_age = 14,
missing_age = 99)