csu_ageSpecific {Rcan} | R Documentation |
csu_ageSpecific
Description
csu_ageSpecific
calculate and plot Age-Specific Rate.
Usage
csu_ageSpecific(df_data,
var_age="age",
var_cases="cases",
var_py="py",
group_by = NULL,
missing_age = NULL,
db_rate = 100000,
logscale=FALSE,
plot_title=NULL,
legend=csu_trend_legend(),
color_trend = NULL,
CI5_comparison=NULL,
var_rate="rate")
Arguments
df_data |
Data (need to be R | |||||||||||||||||||
var_age |
Age variable. Several format are accepted
Missing age value must be precise in the option | |||||||||||||||||||
var_cases |
Number of event (cases, deaths, ...) variable. | |||||||||||||||||||
var_py |
Population year variable. | |||||||||||||||||||
group_by |
Variable to compare different age specific rate (sex, country, cancer ...). | |||||||||||||||||||
missing_age |
Age value representing the missing age cases. | |||||||||||||||||||
db_rate |
The denominator population. Default is 100000. | |||||||||||||||||||
logscale |
Logical value: if | |||||||||||||||||||
plot_title |
Title of the plot. | |||||||||||||||||||
legend |
Legend option: see | |||||||||||||||||||
color_trend |
Vector of color for the trend. The color codes are hexadecimal (e.g. "#FF0000") or predefined R color names (e.g. "red"). | |||||||||||||||||||
CI5_comparison |
Add a dotted line representing the CI5XI for a specific cancer. | |||||||||||||||||||
var_rate |
Name of the age specific variable if a dataframe is return. |
Details
This function calculate and plot the age specific rate.
The group_by
option allow to compare different population or cancer.
The CI5_comparison
option allow to compare with the CI5XI and therefore test the quality of the data.
If the population data stops before 85+ (75+ for instance), the population data must be 0 when the population data is unknown so, the program can detect automatically the last age group (70+,75+,80+ or 85+) for population.
Value
Return a plot and a data.frame
.
Author(s)
Mathieu Laversanne
References
See Also
csu_group_cases
csu_merge_cases_pop
csu_asr
csu_cumrisk
csu_eapc
csu_ageSpecific_top
csu_bar_top
csu_time_trend
csu_trendCohortPeriod
Examples
data(csu_registry_data_1)
data(csu_registry_data_2)
# you can import your data from csv file using read.csv:
# mydata <- read.csv("mydata.csv", sep=",")
# to select only 1 population.
test <- subset(csu_registry_data_1 , registry_label == "Colombia, Cali")
# plot age specific rate for 1 population.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male")
# plot age specific rate for 1 population, and comparison with CI5XI data.
csu_ageSpecific(test,
plot_title = "Colombia, Liver, male",
CI5_comparison = "Liver")
# plot age specific rate for 4 population,
# legend at the bottom and comparison with CI5XI data using cancer code.
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 1),
plot_title = "Liver, male",
CI5_comparison = 16
)
# plot age specific rate for 4 population, legend at the right.
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(
position="right", right_space_margin = 6.5
),
plot_title = "Liver, male")
# Plot embedded in a graphic device
pdf("test.pdf",width = 11.692 , height = 8.267)
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(position="bottom", nrow = 2),
plot_title = "Liver, male",
CI5_comparison = 16)
plot.new()
csu_ageSpecific(
csu_registry_data_1,
group_by="registry_label",
legend=csu_trend_legend(
position="right", right_space_margin = 6.5
),
plot_title = "Liver, male")
dev.off()