| startAuc {RatingScaleReduction} | R Documentation | 
AUC of a single attribute
Description
Compute AUC of every single attribute
Usage
startAuc(attribute, D)Arguments
| attribute | a matrix or data.frame containing attributes | 
| D | the decision vector | 
Value
| auc | AUC of a single attribute | 
| item | attribute labels | 
| summary | a summary table | 
Author(s)
Waldemar W. Koczkodaj, Alicja Wolny-Dominiak
References
1. W.W. Koczkodaj,  T. Kakiashvili,  A. Szymanska, J. Montero-Marin, R. Araya, J. Garcia-Campayo, K. Rutkowski, D. Strzalka,
How to reduce the number of rating scale items without
predictability loss? Scientometrics, 909(2):581-593(open access), 2017 
https://link.springer.com/article/10.1007/s11192-017-2283-4 
2. X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Muller. proc: an opensource
package for r and s+ to analyze and compare roc curves. BMC Bioinformatics, 2011 
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-77 
Examples
#creating the matrix of attributes and the decision vector
#must be as.numeric()
data(aSAH)
attach(aSAH)
is.numeric(aSAH)
attribute <-data.frame(as.numeric(gender), 
as.numeric(age), as.numeric(wfns), as.numeric(s100b), as.numeric(ndka))
colnames(attribute) <-c("a1", "a2", "a3", "a4", "a5")
decision <-as.numeric(outcome)
#compute AUC of all attributes
start <-startAuc(attribute, decision)
start$summary